
CONVECTIVE STABILITY OF A HORIZONTAL LAYER OF CHEMICALLY 

ACTIVE LIQUID IN THE PRESENCE OF TRANSVERSE FLOW OF REACTANT 

E. A. Eremin and A. K. Kolesnikov UDC 536.25 

This work investigates conditions of the appearance of convection in a horizontal layer 
of a chemically active liquid with penetrable boundaries held at the same temperature. Heat 
is liberated throughout the volume of the liquid as a result of a zero-order reaction. There 
is uniform transverse movement of reactant through the penetrable boundaries at a constant 
rate. The possibility of the existence of time-independent processes of heat transfer in such 
a system, with free convection absent, was analyzed in [i]. The linear problem of convective 
stability under stable heat-conduction conditions, described in [i], is solved here. We 
obtained, for different values of the parameters, limits of stability defining the threshold 
of the beginning of convection. The convective stability o~ reacting liquids in the absence 
of sparging was examined in [2-4]. The effect of transverse movement on the convective 
stability of a horizontal layer of nonreactive liquid was studied in [5]. 

An infinite horizontal layer of a incompressible, chemically active liquid is bounded by 
solid permeable surfaces z = 0 and z = d. A homogeneous exothermic reaction with a high rate 
of heat production is occurring in the liquid. The rate of heat liberation permits us to 
describe the process through a model of a zero-order reaction. In accordance with Arrhenlus' 
law, the dependence of the capacity of the heat surfaces on temperature is described by the 
function ko exp [--E/(RT)], where T is absolute temperature, R is the gas constant, preex- 
ponential multiplier ko and activation energy E are parameters of the reaction. The bound- 
aries of the layer are kept at constant temperature To. The reactant is uniformly injected 
through the bottom boundary at a rate vo, while it is uniformly drawn out through the top 
boundary at that same rate. This leads to the existence in the layer of unperturbed lateral 
flow with a uniform vertical speed vo. 

As follows from [i], stable heat-transfer processes are possible under conditions of non- 
convective heat exchange in a reactant undergoing uniform transverse movement. The corre- 
sponding temperature distributions are described by solutions to a one-dimensional nonlinear 
equation of thermal conductivity appearing as follows in dimensionless form: 

n 

s o  - -  Pee~ + 6exp [8o/(i -}- ~o8o)] = O, (1) 

with boundary conditions 80(0) = Co(1) = 0. Here 0o(z) is the unperturbed value of the tem- 
perature, calculated from the temperature of the boundaries of the layer; the units of temper- 
ature measurement here are RT~/E; Pe= vod/X is the Peclet number characterizing the rate of 
injection; 6 = QkoEd a exp [--E/(RTo)]/(MRT~) is the Frank-Kamenetskii parameter; 8o = RTo/E 
is a small parameter whose value for combustion reactions does not exceed 0.05 and, further 
it is usually [4, 6] assumed that 8o = 0; Q is the calorific value of the reaction; X and 
are the coefficients of thermal diffusivity and thermal conductivity, respectively. 

In the special case when Pe= 0 (absence of injection), Eq. (i) reduces to the well-known 
equation of steady-state thermal-explosion theory, the solution of which was described in [6]. 
According to [6], steady-state states of the system exist only within the range 0 ~ 6 s 6cr. 
The upper boundary of this interval 6cr = 3.514 defines the threshold of thermal explosion. 
Two equilibrium modes of heat conduction are possible within the range 6 < 6cr. The corre- 
sponding stationary temperature distributions are sy~netric relative to the middle of the 
layer, where the temperature is at a maximum. 

In the general case (Pc @ 0), the solution to the boundary-value problem (I) shows that 
there are also (as when Pe= 0) two stationary modes of heat transfer for the case of a fixed 
P~clet number within the range of values of 6 in the reactant bounded from above by 6cr. As 
before, the value of 6cr characterizes the thermal-explosion threshold and increases with in- 
crease in Pe. The function 6cr(Pe) at Pe < 4 is closely approximated by the polynomial 
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For both solutions, lateral flow destroys the symmetry of the temperature profiles and the 
zone of greatest heating is shifted to the boundary z = I. Figure 1 shows the dependence 
of the maximum temperature in the layer 0Om on the Frank-Kamenetskil parameter 6 for several 
Peclet numbers (Pe = Oj 4~ 8), along with a schematic representation of an unperturbed tem- 
perature distribution typical for the case of injection. At any values of Pe, the upper 
stationary solution in the heat-conductlon mode proves to be unstable. 

Due to convective instability, the lower stationary heat-conduction mode in a moving 
reactant may also be disrupted (the stratification of density in the top part of the layer 
is unstable). It is the convective stability of this mode that is of the greatest interest, 
and it will be the subject of further study here. 

The convection equation in the Boussinesq approximation for a homogeneous chemically 
active liquid [2-4] differs from the usual equations [7] by the inclusion of a heat-conduc- 
tivity term describing an internal heat liberation that increases exponentially with tempera- 
ture. To determine the conditions of the beginning of convection, we will examine the 
behavior of small perturbations for a rate v, temperature O, and pressure p. The dimension- 
less linearized perturbation equations have the form 

av Pe 
"~- + ~T  (YV) v = - -  VP + Av + R a  Oy,  

(2 )  
P r  ~ + Pe ? v O + v A O o  = AO + 80  exp 0o, d iv  v = 0, 

a ~  

where = is the time; 7 is a unit vector directed upward along the z axis; Pr = v/X is the 
Prandtl number; Ra ffi gBRT~da/E~• is the Rayleigh number; g is the acceleratlon due to gravity; 
8 and v are the coefficients of volume expansion and kinematic viscosity of the liquid, re- 
spectively. As units of measurement of distance and temperature, as in the stationary problem 
(i), we have chosen the values d and RT~/E; for time, rate, and pressure, we have selected 
d2/v, x/d, and 0oX~/d a. 

At the boundaries of the layer, the rate and temperature perturbations vanish: 

V = O, 0 = 0 at  z = O a n d z  = t .  ( 3 )  

Let us introduce normal perturbations dependent on time and the horizontal coordinates 
according to the law exp [--Xt + i(k~x + kay)], where kl and ka are real wave numbers; ~ ffi 
X r + iXi (Xr is the real portion of the decrement %,and h i isthe imaginary portion of the 
same). After excludingthe pressurefrom (2),the boundary-valueproblem for the amplitudeof normal 
perturbations of rate w(z) and temperature 8(z) acquires the form 

__ ~. (w,~ __ k2w) + p T . ( w .  Po . ,, . . . .  - -  k2w ') (w xv 2k~w" + k4w) Ra k20, (4 )  

- -  ~ Pr  0 + e e  0' + WOo = (0" - -  k20) + 60 exp Oo (k ~ = k~ + k~); (5 )  

w = 0 ,  w ' = 0 , 0 = 0  at z = 0  and z = i ,  

The temperature distributions Oo(Pe, ~, z) are the solutions of (5), the unperturbed station- 
ary problem (1) and exist within the range ~-< ~cr. 
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At Ra= 0 (absence of bouyancy), boundary-value problem (4), (5) reduces to the problem 
of the stability of nonconvective heat-transfer processes in a laterally moving reactant 
relative to temperature perturbations [i]. In the case Pe= 0, the system (4), with boundary 
conditions (5), coincides with the system examined in [2-4]. 

The result of the solution of convective stability problem (4), (5) is the determination 
of the decrements of normal perturbations % in relation to five dimensionless parameters: the 
Prandtl, Pdclet, and Rayleigh numbers, the Frank-Kamenetskii parameter, and the wave number. 
In finding the eigenvalues %(Pr, Pe, Re, 8, k), Eq. (4) is represented in the form of a sys- 
tem of twelve ordinary first-order differential equations for the real and imaginary parts 
of the complex amplitudes of the perturbations and their derivatives. We plotted numerically 
three linearly independent particular solutions for which the conditions were satisfied at 
the initial point of integration. We used the Runge-Kutta method to construct the particular 
solutions. (The use of this method to solve problems of convective stability is discussed in 
[8]). The critical conditions for the occurrence of convection are the values of the param- 
eters in which %r = 0; states with %r > 0 are stable, while states in which %r < 0 are un- 
stable. 

The calculations show that the spectrum of decrements %(Ra) has a very complicated struc- 
ture, similar to that in [4] for the case Pe= 0. In particular, in the region of stability 
(%r > 0), oscillatory modes with %i # 0 are possible. For convective instability, however, 
the real branches of the spectrum are important, and the critical perturbations are monotonic. 
The presence of injection leads to a situation whereby the boundary of monotonic instability 
(% = 0) is dependent on the Prandtl number. It should be noted that in the case of nonsym- 
metrical internal heat liberation, the pattern of convective stability is not (as it is in 
[5]) invariant in relation to the shift in the direction of lateral movement of the liquid. 

Figure 2 shows the family of neutral curves Re(k) of the lower unperturbed stationary 
mode. The curves were plotted for ~ = 3 and Pr = 1 at different values of the Peclet number 
(Pe= 0, 1, 2, 3, and 4). The zones of instability are located above the curves. An increase 
in injection rate with a fixed value of the Frank-Kamenetskii parameter for the lower sta- 
tionary mode reduces heating of the liquid caused by internal heat liberation (see Fig. 1) 
and narrows the region of unstable density stratification at the top boundary of the layer 
[I]. This situation leads to a substantial increase in the convective stability of the 
medium with an increase in the value of Pe. The marked shift in critical wave numbers k, -- 
corresponding to min Re(k) E Re, -- with an increase in Peclet number is a consequence of the 
narrowing of the zone in which convection develops. 

The results of the solution to the stability problem are conveniently represented by 
curves describing the dependence of the minimum critical Rayleigh number Re, of the base 
level of instability on the remaining parameters. Figure 3 shows the function Ra,(~) for 
Pr = l,and Pe= 0, 2, 4, and 6. At ~ = 8cr, curves Re,(8) have end points. In accordance 
with [1], the positions of the curves are determined by the values of the Peclet numbers. 
The function Ra,(~cr) is shown by the dashed line in Fig. 3. (As already noted, at 6 > 6cr, 
unperturbed states cannot exist in the system, and the problem of their stability does not 
arise.) In the region of the existence of unperturbed states, for Ra > Re,(8) the stationary 
modes are unstable with respect to the occurrence of convection. Intensification of injec- 
tion has a stabilizing effect. The capacity of the internal chemical heat sources and, ac- 
cordingly, heating of the reactant increases with an increase in the Frank-Kamenetskii param- 
eter, leading to a reduction in convective stability. For liquid reactants, an increase in 
Prandtl number (for explosive liqulds, Pr ~ 20) is accompanied by a slight increase in the 
threshold of the onset of convection. The function Re,(8) corresponding to Pe= 4 and Pr = 
20 is shown by the dash--dot line in Fig. 3. 

The critical values of the Rayleigh number Ra, monotonically increase with an increase 
in reactant injection rate, while at all values of the Frank-Kemenetskii parameter the in- 
crease in convective stability proves to be quite substantial. For example, in a layer of 
reactant 1 cm thick having properties similar to water, lateral movement at a rate of 0.005 
cm/sec increases stability fourfold. 

The dependence of the boundary of a convective stability on the Prandtl number Ra,(Pr) 
(plotted in Fig. 4 at 8 = 3 and Pe= 3.75, 4.00, and 4.25) is fairly complex in appearance. 
In the region Pr > i, as noted above, the stability of the system increases by an insignificant 
amount. At large values of Pr, curves Ra,(Pr) are extended on an asymptote corresponding to 
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Pr = - (dashed straight lines in Fig. 4). The value of Ra, at Pr = " exceeds the value of 
Ra, at Pr = 1 by only 4-5%. Most chemically active liquids are characterized by high values 
of Pr, and in solving boundary-value problem (4), (5) we may ignore the term in the equation 
of motion describing injection of the reactant. In this asymptotic case, Ra, becomes in- 
dependent of Pr. 

At Prandtl numbers Pr ~ i, the functions Ra,(Pr) have a minimum. For values Pr < 1 (re- 
acting gases), there is a sharp increase in the stability threshold with a decrease in Pr. 
At Pr § 0, a boundary layer is formed at the upper boundary z = I. In the case Pr = 0, Eq. 
(4) has a singularity, and to explain the behavior of function Ra,(Pr) at low values of Pr, 
use should be made of the method of combining asymptotic expansions [9]. It turns out that 
to determine the asymptotes in the first order with respect to Pr, it is sufficient to per- 
form an outward expansion only. Here, the "viscous" terms of system of equations (4) are 
neglected and the order of boundary-value problem (4), (5) is reduced by unity. An inward 
expansion localized close to boundary z = 1 introduces a correction into higher-order (with 
respect to Pr) solutions, and its approximation may be ignored in the present discussion. 
Thus, for values of Pr close to zero, the stability boundary is determined from a boundary- 
value problem of the following form: 

- -  L (w" - -  k % )  + Pe (w'"  - -  k ~ w  ') = - -  A k  ~o, 
t 

- -  LO -+- Pe O' --{- woo = (O" - -  k~O) + 60 exp Oo; 

w----O, w' ----0, 0----0 at z----O, 
W----0, 0 - - - - 0  at Z = i ,  

(6) 

(7) 

where L = k Pr; A = Ra Pr. 
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The solutions to problem (6), (7) are shown by dashed curves in Fig. 4 for ~ = 3 and 
Pe ffi 3.75 and 4.00. When the Prandtl number Pr § 0, for all values of the parameters the 
critical Rayleigh number Re, § -. 

The results obtained here show that lateral injection of a reactant is an effective 
means of influencing the convective stability of reactive systems. 

The authors thank E. M. Zhukhovitskil for supervising the work and A. A. Nepomnyashchii 
for discussing the results. 
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NUMERICAL STUDY OF THE UNSTABLE INTERACTION OF A SUPERSONIC 

STREAM WITH A FLAT BARRIER 

V. E. Kuz'mina and S. K. Matveev UDC 532.525.2 

Numerous experimental studies have been devoted to the interaction of an axisymmetric , 
supersonic stream and a flat obstacle. For example, in [1-8], determinations were made of 
the boundaries of the zone of instability [7] and the amplitude--frequency characteristics of 
the process, and features of the pattern of flow were described qualitatively within a fairly 
broad range of modes of interaction. In [9-13], different hypotheses were advanced on the 
mechanism of the appearance of oscillations. Also, within the framework of different models, 
analytical solutions were constructed and were used to determine frequency characteristics of 
the process or the lower boundary of the stability zone. In [14], a numerical study was made 
of one mode of nonstationary interaction between a supersonic stream and a barrier of finite 
dimensions. 

The present work examines the unstable interaction of a supersonic stream with an infin- 
ite barrier. The problem was solved within the framework of a model of a nonviscous, non- 
heat-conducting gas in accordance with the difference scheme of Godunov. The potential of 
this scheme for solving several problems of unsteady gasdynamics was examined in [15]. In 
[16], Godunov's method was successfully used to calculate stationary modes of interaction 
between a supersonic stream and a flat barrier. 

The calculations were performed on a uniform rectangular grid. The distance from the 
symmetry axis to the top boundary of the grid N was made larger than the diameter of the 
maximum cross section of the first roll of the free stream determined from the data in [17]. 
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